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Abstract— Traditionally, frequency spectrum is licensed to
users by government agencies in a fixed manner where licensee
has exclusive right to access the allocated band. This policy
has been de jure practice to protect systems from mutual
interference for many years. However, with increasing demand
for the spectrum and scarcity of vacant bands, a spectrum
policy reform seems inevitable. Meanwhile, recent measurements
suggest the possibility of sharing spectrum among different
parties subject to interference-protection constraints. In this
paper we study spectrum-sharing between a primary licensee and
a group of secondary users. In order to enable access to unused
licensed spectrum, a secondary user has to monitor licensed
bands and opportunistically transmit whenever no primary signal
is detected. However, detection is compromised when a user
experiences shadowing or fading effects. In such cases, user
cannot distinguish between an unused band and a deep fade.
Collaborative spectrum sensing is proposed and studied in this
paper as a means to combat such effects. Our analysis and
simulation results suggest that collaboration may improve sensing
performance significantly.

I. INTRODUCTION

Recent years have witnessed a dramatic increase in the
demand for radio spectrum. This is partly due to the increasing
interest of consumers in wireless services which in turn is
driving the evolution of wireless networks toward high-speed
data networks. With the emergence of new applications and
the compelling need for mobile Internet access, demand for
the spectrum is expected to grow even more tremendously in
the coming years.

Spectrum is inherently a limited natural resource access to
which is regulated by government agencies such as Federal
Communications Commission (FCC) in the United States. Tra-
ditional approach to spectrum management is very inflexible
in the sense that frequency bands are exclusively licensed
to users and each system has to operate within a limited
frequency band. However, with most of the spectrum being
already allocated, it is becoming exceedingly hard to find
vacant bands to either deploy new services or to enhance
the existing ones. This spectrum limitation has had profound
impacts on the research directions of wireless communications
community. Within the past decade a great deal of research
has been done to squeeze every bit per second out of a given
channel.

On the other hand, recent measurements by Spectrum Policy

Task Force (SPTF) within FCC indicate that many portions of
the licensed spectrum are not used for significant periods of
time [1]. In another experiment, spectrum occupancy between
30 MHz and 3 GHz in New York City in September 2004 was
studied by Shared Spectrum Company [2]. The average duty
cycle during the measurement period (approximately 30 hours)
was only 13%. Evidently, there are many ”white spaces” in
the spectrum which are not utilized. This finding suggests that
currently spectrum scarcity is largely due to the inefficient
fixed frequency assignments rather than physical shortage of
the spectrum. Thus, an alternate remedy to spectrum scarcity
is to allow other systems to access such under-utilized licensed
bands dynamically (i.e. whenever/wherever licensee is not
fully using its spectrum).

FCC’s initiative to open up TV bands for unlicensed ac-
cess [3] along with several other projects including Defense
Advanced Research Projects Agency (DARPA)’s ”Next Gen-
eration” (XG) program [4] and national science foundation’s
”NeTS-ProWiN” project [5] signal a paradigm shift in the
spectrum access policy. Meanwhile, IEEE has formed a new
working group on wireless regional area networks (IEEE
802.22) whose goal is to develop a standard for unlicensed ac-
cess to TV spectrum on a non-interfering basis [6]. This raises
several new technical and regulatory issues to be addressed by
the academia as well as the policy-makers. Interested reader is
referred to [7]- [8] for general overview of issues associated
with the spectrum access policy reform.

In its report to the commission, SPTF proposed secondary
access to already-licensed spectrum as a means to mitigate
spectrum shortage. However, such spectrum-sharing should be
carried out in a controlled fashion so that primary licensee’s
operation in the band is not compromised. Therefore, a sec-
ondary user trying to access the licensed spectrum should
consider the impact of its transmission on the reception quality
of the primary licensee.

In absence of cooperation or signalling between primary
licensee and secondary user(s), spectrum availability for sec-
ondary access may be determined by direct spectrum sensing.
In this case, a secondary user monitors a licensed frequency
band and opportunistically transmits when it does not detect
presence of any primary users.

When the structure of primary signal is known to the
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Fig. 1. Block diagram of an energy detector

secondary user, the optimal detector in stationary Gaussian
noise is a matched-filter followed by a threshold test. However,
implementing this type of coherent detector is difficult since a
secondary user would need extra dedicated circuitry to achieve
synchrony with each type of primary licensee [9]. Moreover,
there may be cases in practice where matched-filter detector is
ruled out due to the lack of knowledge about primary signal’s
structure. In such scenarios, a general-purpose detector would
be much more desirable.

A common method for detection of unknown signals in
noise is energy detection (a.k.a. radiometry) [10]. Fig. 1
depicts block-diagram of an energy detector. The input band-
pass filter selects the center frequency, fs, and bandwidth of
interest, W . This filter is followed by a squaring device to mea-
sure the received energy and an integrator which determines
the observation interval, T . Finally, output of the integrator,
Y , is compared with a threshold, λ, to decide whether signal
is present or not.

While energy-detectors have been extensively studied in the
past, performance under channel randomness has been only
recently considered [11]. Simulation results of [11] along with
those provided later in this paper suggest that performance of
energy-detector degrades in shadowing/fading environments.

In order to improve spectrum sensing, several authors have
recently proposed collaboration among secondary users [9],
[12], [13]. Fig. 2 shows a scenario where only one secondary
user may be able to detect the primary signal and the other
users have no way of distinguishing between a white space
or a deep shadowing effect. In such cases, collaboration may
enhance secondary spectrum access significantly.

Most of the proposed methods are ad hoc solutions and a
more general model incorporating different parameters such
as number of secondary users, detection and false-alarm
probabilities and more importantly propagation characteristics
is still lacking. In this paper we quantify performance of
spectrum sensing in fading environments and study effect of
collaboration.

Remainder of this extended abstract is organized as follows.
In section 2, performance of local spectrum sensing under
shadowing/fading is characterized while collaborative spec-
trum sensing is outlined in section 3. Finally some concluding
remarks and further research directions are discussed in section
4. Simulation results accompany analysis wherever applicable.

II. LOCAL SPECTRUM SENSING IN FADING CHANNELS

The goal of spectrum sensing is to decide between the
following two hypotheses,

x(t) =
{

n(t), H0

h s(t) + n(t), H1

Primary Transmitter

Secondary User 1

Secondary User 2
Secondary User 3

Fig. 2. Collaborative spectrum sensing in a shadowed environment. In this
case only the middle secondary user may be able to detect the primary signal.

where x(t) is the signal received by secondary user and s(t)
is primary users’s transmitted signal, n(t) is the additive white
Gaussian noise (AWGN) and h is the amplitude gain of the
channel. We also denote by γ the signal-to-noise ratio (SNR).

We denote the output of integrator in Fig. 1 by Y which
serves as decision statistic. Following the work of Urkowitz
[10], Y may be shown to have the following distribution,

Y ∼
{ X 2

2TW , H0

X 2
2TW (2γ), H1

where X 2
2TW and X 2

2TW (2γ) denote central and non-central
chi-square distributions respectively, each with 2TW degrees
of freedom and a non-centrality parameter of 2γ for the latter
distribution. For simplicity we assume that time-bandwidth
product, TW , is an integer number which we denote by m.

In a non-fading environment where h is deterministic,
probabilities of detection and false alarm are given by the
following formulas [11],

Pd = P{Y > λ|H1} = Qm(
√

2γ,
√

λ) (1)

Pf = P{Y > λ|H0} =
Γ(m,λ/2)

Γ(m)
(2)

where Γ(.) and Γ(., .) are complete and incomplete gamma
functions respectively [14] and Qm(., .) is the generalized
Marcum Q-function [15] defined as follows,

Qm(a, b) =
∫ ∞

b

xm

am−1
e−

x2+a2
2 Im−1(ax) dx

where Im−1(.) is the modified Bessel function of (m − 1)th
order.

The fundamental tradeoff between Pm = 1−Pd (probability
of missed detection) and Pf has different implications in
the context of dynamic spectrum-sharing. A high Pm would
result in missing the presence of primary user with high
probability which in turn increases interference to primary
licensee. On the other hand, a high Pf would result in low
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Fig. 3. Complementary ROC (Pm vs. Pf ) under log-normal shadowing
with different dB-spreads (γ = 10 dB, m = 5). AWGN curve is provided
for comparison.

spectrum utilization since false alarms increase number of
missed opportunities (white spaces).

As expected, Pf is independent of γ since under H0 there
is no primary signal present. On the other hand, when h
is varying due to shadowing/fading, (1) gives probability of
detection conditioned on the instantaneous SNR, γ. In this
case, average probability of detection (which with an abuse of
notation is denoted by Pd) may be derived by averaging (1)
over fading statistics,

Pd =
∫

x

Qm(
√

2γ,
√

λ)fγ(x)dx (3)

where fγ(x) is the probability distribution function (pdf) of
SNR under fading.

Performance of energy-detector for different values of aver-
age SNR and m may be characterized through complementary
receiver operating characteristics (ROC) curves (plot of Pm vs.
Pf ). In what follows we study performance under shadowing
and Rayleigh fading.

A. Log-normal Shadowing

Empirical measurements suggest that medium-scale varia-
tions of the received-power, when represented in dB units,
follow a normal distribution (see e.g. [16]). In other words,
the linear (as opposed to dB) channel gain may be modelled
by a log-normal random variable, eX , where X is a zero-
mean Gaussian r.v. with variance σ2. Log-normal shadowing
is usually characterized in terms of its dB-spread, σdB , which
is related to σ by σ = 0.1 ln(10)σdB .

When γ is log-normally distributed due to shadowing, (3)
may be evaluated numerically. Fig. 3 shows complementary
ROC curves for three different dB-spreads. Average SNR,
γ, and m are assumed to be 10 dB and 5 respectively. A
plot for non-fading (pure AWGN) case is also provided for
comparison.

Comparing the AWGN curve with those corresponding to
shadowing, we observe that for regions of practical interest,
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Fig. 4. Complementary ROC (Pm vs. Pf ) under Rayleigh fading (γ = 10
dB, m = 5). AWGN curve is provided for comparison.

spectrum sensing is harder in presence of shadowing. More-
over, as shadowing becomes more intense (higher dB-spread),
energy-detector’s performance degrades.

B. Rayleigh Fading

Under Rayleigh fading, γ would have an exponential dis-
tribution. In this case, a closed-form formula for Pd may be
obtained (after some manipulation) by substituting fγ(x) in
(3) [11],

Pd = e−
λ
2

m−2∑
k=0

1
k!

(
λ

2

)k

+
(

1 + γ

γ

)m−1

(4)

×
(

e−
λ

2(1+γ) − e−
λ
2

m−2∑
k=0

1
k!

(
λγ

2(1 + γ)

)k
)

Fig. 4 provides plots of complementary ROC curve under
AWGN and Rayleigh fading scenarios. γ and m are assumed
to be 10 dB and 5 respectively. We observe that Rayleigh
fading degrades performance of energy-detector significantly.
Particularly, achieving Pm < 10−2 entails a probability of
false-alarm greater than 0.9 which in turn results in poor
spectrum utilization.

III. COLLABORATIVE SPECTRUM SENSING IN FADING

CHANNELS

In order to improve performance of spectrum sensing, we
allow different secondary users to collaborate by sharing
their information. In order to minimize the communication
overhead, users only share their final 1-bit decisions (H0 or
H1) rather than their decision statistics.

Let n denote the number of users collaborating. For sim-
plicity we assume that all n users experience independent
and identically distributed (iid) fading/shadowing with same
average SNR. A fundamental result in distributed binary
hypothesis testing is that when sensors are conditionally
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Fig. 5. Qm vs. Qf under iid log-normal shadowing (σdB = 6 dB) for
different number of collaborative spectrum sensors (γ = 10 dB, m = 5)

independent (as in our case), optimal decision rule for indi-
vidual sensors is likelihood ratio test (LRT) [17]. However,
optimum individual thresholds are not necessarily equal and
it is generally hard to derive them. We assume that all users
employ energy-detection rather than LRT and use the same
decision rule (i.e. same threshold λ). While these assumptions
render our scheme sub-optimum, they facilitate analysis as
well as practical implementation.

A secondary user receives decisions from n− 1 other users
and decides H1 if any of the total n individual decisions is
H1. This fusion rule is known as the OR-rule or 1-out-of-n
rule [17]. Probabilities of detection and false-alarm for the
collaborative scheme (denoted by Qd and Qf respectively)
may be written as follows,

Qd = 1 − (1 − Pd)n (5)

Qf = 1 − (1 − Pf )n (6)

where Pd and Pf are the individual probabilities of detection
and false-alarm as defined by (3) and (2) respectively. It may
be seen from (5) and (6) that compared to local sensing, this
collaborative scheme increases probability of detection as well
as probability of false-alarm . However, the net effect is an
improvement in detection performance as seen in simulations.

Fig. 5 and 6 show complementary ROC for different number
of collaborating users under independent log-normal shadow-
ing (σdB = 6 dB) and Rayleigh fading respectively. As before
γ = 10 dB and m = 5. In both cases non-fading AWGN curve
is shown for comparison.

As seen in these figures, fusing decisions of different sec-
ondary users cancels deleterious impact of shadowing/fading
effectively. Moreover, with increasing n, collaborative scheme
is capable of outperforming AWGN local sensing (n = 1).
This is due to the fact that for larger n, with high probability
there will be a user with a channel better than that of the
non-fading AWGN case.
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Fig. 6. Qm vs. Qf under iid Rayleigh fading for different number of
collaborative spectrum sensors (γ = 10 dB, m = 5)
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Fig. 7. Qd vs. γ under iid Rayleigh fading for different number of
collaborative spectrum sensors (Qf = 10−1, m = 5)

Fig. 7 shows Qd versus γ under iid Rayleigh fading for
different number of collaborative spectrum sensors. For each
curve, decision threshold, λ, is chosen such that Qf = 10−1.
Time-bandwidth product, m, is set to 5 as before.

Results indicate a significant improvement in terms of
required average SNR for detection. In particular, for a proba-
bility of detection equal to 0.9, local spectrum sensing requires
γ � 16 dB while collaborative sensing with n = 10 only needs
an average SNR of 5 dB for individual users.

IV. COLLABORATIVE SPECTRUM SENSING UNDER

SPATIALLY-CORRELATED SHADOWING

Up to this point we have dealt with the case where sec-
ondary users experience independent shadowing/fading. While
such assumption is reasonable for multi-path fading effects,
there is usually a degree of spatial correlation associated with
log-normal shadowing [18]. Intuitively, shadowing correlation
would degrade performance of collaborative sensing when
collaborating users are close. This is due to the fact that
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Fig. 8. Qd vs. Qf under spatially-correlated log-normal shadowing for
different distances between two collaborative spectrum sensors in a suburban
environment (n = 2, γ = 10dB, m = 5). Cases with no-collaboration
(n = 1) and also independent shadowing (n = 2) are shown for comparison.

such users are likely to experience similar shadowing effects
thereby countering collaboration gain. In this section further
analysis and simulation results for the above scenario are
provided.

Empirical data suggests an exponential correlation function
for shadowing effects [18],

R(d) = e−ad (7)

where R(d) is the correlation function, d is the distance
between two locations and a is a constant depending on
the environment. Based on measurements reported in [18],
a = 0.1204 in urban environments and a ≈ 0.002 in suburban
environments.

In order to quantify the degrading effect of correlated
shadowing on detection performance, we consider two col-
laborating users at different distances. For each distance,
two correlated log-normal random variables, with correlation
function as given by (7), are generated. In each case ROC is
obtained using Monte Carlo simulation.

Fig. 8 and Fig. 9 depict the ROC at different inter-user
distances for suburban and urban environments respectively.
As expected, correlated shadowing degrades performance of
collaborative detection. However, this effect becomes less
significant when two users are located further apart. Moreover,
it can be seen that to achieve the same performance level,
a much larger separation between the two users is required
in suburban (as opposed to urban) environments. Thus, when
designing collaborative spectrum sensing protocols, relative
location of users should be taken into account.

V. CONCLUDING REMARKS

In a heavily shadowed/fading environment, different sec-
ondary users may need to cooperate in order to detect the
presence of a primary user. In such a scenario, a compre-
hensive model relating different parameters such as detection
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Fig. 9. Qd vs. Qf under spatially-correlated log-normal shadowing for
different distances between two collaborative spectrum sensors in an urban
environment (n = 2, γ = 10dB, m = 5). Cases with no-collaboration
(n = 1) and also independent shadowing (n = 2) are shown for comparison.

probability, number and spatial distribution of spectrum sen-
sors and more importantly propagation characteristics is yet to
be found.

This paper serves as a first step towards design and anal-
ysis of collaborative spectrum sensing schemes. Our results
indicate that significant performance enhancements may be
achieved through collaboration thereby motivating further re-
search in this area.

It is well-known that energy detector’s performance is
susceptible to uncertainty in noise power [19]. In such cases,
alternate detection schemes such as cyclic feature detection
[20] may be employed. Performance analysis of spectrum
sensing in this scenario is the subject of our current research.
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